

블럭체인 미래 가치와 기술동향

수석컨설턴트/오픈 블럭체인 포럼 윤석빈

2019 블럭체인 5대 Trend

- STO(증권형 토큰 발행)의 확산
- 기관 투자자 유입
- 확장 솔루션(Scaling) 확보
- 기업의 블록체인 적용 및 활용 확산
- 스테이블 코인

Source: 후오비 코리아(Huobi Korea)

Top 10 Strategic Technology Trends for 2019

- 지능(Intelligent), 디지털(Digital), 메시(Mesh)
- ▲자율 사물(Autonomous Things)
- ▲증강 분석(Augmented Analytics)
- ▲인공지능 주도 개발(AI-Driven Development)
- ▲디지털 트윈(Digital Twins)
- ▲자율권을 가진 에지(Empowered Edge)
- ▲몰입 경험(Immersive Experience)
- ▲블록체인(Blockchain)
- ▲스마트 공간(Smart Spaces)
- ▲디지털 윤리와 개인정보보호(Digital Ethics and Privacy)
- ▲양자 컴퓨팅(Quantum Computing)

블록체인 부가가치 2030년 3300조

글로벌 기업 84% "블록체인, 앞으로 주류될 것" 최종수정 2018.08.29 10:12 기사입력 2018.08.29 10:12

Gartner	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Business VAlu e (조 원 ₩) (Billions of dollars)	4조	5조	6조	21조	37조	50조	64조	96조	176조	360조	720조	1332조	2162조	3300조
Growth(%)		24%	56%	128%	78%	34%	27%	50%	84%	104%	100%	84%	64%	46%

Gartner 블록체인 비즈니스 전망 (2017,2018년)

Hype Cycle for Blockchain Business

Gartner 블록체인 기술 전망 (2017,2018년)

Hype Cycle for Blockchain Technology

하이프 사이클(Hype Cycle)

위키백과, 우리 모두의 백과사전.

기술의 성숙도를 표현하기 위한 시각적 도구이다. *과대광고 주기*라고도 한다.미국의 정보 기술 연구 및 자문 회사인 가트너에서 개발하였다.

핵심 인물 진 홀 (Gene Hall) CEO

매출액 ▲ 10억 6000만 미국 달러 (2006년)

순이익 ▲ 1억 5600만 미국 달러 (2006년)

종업원 5,700명(2013년)

웹사이트 www.gartner.com로

단계	명칭	2030
1	기술 촉발 (Technology Trigger)	잠재적 기술이 관심을 받기 시작하는 시기. 초기단계의 개념적 모델과 미디어 관심이 대중의 관심을 불러 일으킨다. 상용화된 제품은 없고 상업적 가치도 아직 증명되지 않은 상태이다.
2	부풀려진 기대의 정점 (Peak of Inflated Expectations)	초기의 대중성이 일부의 성공적 사례와 다수의 실패 사례를 양산해 낸다. 일부 기업이 실제 사업에 착수하지만, 대부분의 기업들은 관망한다.
3	환멸 단계 (Trough of Disillusionment)	실험 및 구현이 결과물을 내놓는 데 실패함에 따라 관심이 시들해진다. 제품화를 시도한 주체들은 포기하거나 실패한다. 살아 남은 사업 주체들이 소비자들을 만족시킬만한 제품의 향상에 성공한 경우에만 투자가 지속된다.
4	계몽 단계 (Slope of Enlightenment)	기술의 수익 모델을 보여 주는 좋은 사례들이 늘어나고 더 잘 이해되기 시작한다. 2-3세대 제품들이 출시된다. 더 많은 기업들이 사업에 투자하기 시작한다. 보수적인 기업들은 여전히 유보적인 입장을 취한다.
5	생산성 안정 단계 (Plateau of Productivity)	기술이 시장의 주류로 자리잡기 시작한다. 사업자의 생존 가능성을 평가하기 위한 기준이 명확해진다. 시장에서 성과를 거두기 시작한다.

NExTT Framework Emerging Trends in Blockchain Technology

- 실험적 단계 (Experimental)
 - 개념적이거나, 초기 트랜드이나, 아직 널리 쓰이지는 않는 단계 Consortia, Stablecoins, Identity management, Non-fungible tokens, Decentralized exchanges, Security tokens, Data marketplaces, DAOs
- 가변적단계 (Transitory)

실제로 사용되기 시작하였으나, 여전히 불확실성이 존재하는 단계 Initial coin offerings, Smart contract platforms

■ 위협적단계 (Threatening)

의미 있는 투자가 이루어져서 시장에 확산되기 직전인 단계 DLT in clearance and settlement, DLT in loT, Bitcoin, Privacy coins

■ 필수단계 (Necessary)

널리 쓰이기 시작하는 단계 Bitcoin mining, Fiat-crypto exchanges, Custody

- Bitcoin and cryptocurrencies
- Enterprise distributed ledger (DLT) use cases
- Decentralized applications

Source: CB insight

블록체인 사업가능 분야

블록체인 사용예시

블록체인 사업가능 분야

Ga	r	'n		
Ua		41	E	R

Industry	Potential	Years to Maturity
Banking and Investment Services	Transformational	5 to 10 years
Communications Service Providers	High	5 to 10 years
Education	High	5 to 10 years
Government	Transformational	5 to 10 years
Healthcare	Transformational	More than 10 years
Insurance	Transformational	5 to 10 years
Life Science	Transformational	5 to 10 years
Manufacturing	High	More than 10 years
Oil and Gas	Transformational	More than 10 years
Retail	Transformational	More than 10 years
Utilities	High	5 to 10 years

블록체인 사업화 & 정보화 절차

블록체인 사업화 절차

ID: 350486

Gartner

블럭체인 분류와 역사

BlockChain1.0(2009) BlockChain2.0(2015.07) → BlockChain3.0

Ethereum - 해결하고자 하는 핵심문제

- 특정한 어플리케이션에 한정된 블록체인이 아니라 다양한 종류의 dapp을 실행할 수 있는 범용 플랫폼
- PoW의 에너지 낭비와 중앙화 되어가는 채굴풀 문제
- Trilemma 문제 Decentralization, Scalability, Security 3가지를 하나의 체인에서 모두 해결할 수는 없음

Ethereum - 1x 솔루션

- Transaction based state machine UTXO vs Account (rich statefulness), world computer
- Merkle patricia tree
- Turing completeness smart contract
- Execution model EVM (stack based) & Gas system
- Memory hard PoW Ethash, modified GHOST protocol

Ethereum 1x문제들

- Scalability issue single threaded world computer
- Every node processes every transaction and stores the entire states
- Solidity language & formal verification
- Transaction finality
- Inflexible gassystem
- PoW's energy consumption

Ethereum 2.0

- Sharding +CasperFFG
- Multi layered scalability solutions
- Libp2p transport layer
- Efficient signature scheme & accumulator
- eWASM
- Formal verification

블록 producers/validators 선정방법 및 합의 방식

PoW	Casper FFG
Hash power competition	Staking ether
Longest or heaviest chain	Pre-defined producer order
Penalty: Waste hash power	Slash conditions
Probable or no finality	Finality
Liveness over safeness	Safeness over liveness

Ethereum 2.0 Architecture

A whole new blockchain

CONSENSYS

ETHEREUM CASPER

3 TYPES OF CHAINS

CURRENT CHAIN

PROOF OF WORK

We will be transitioning to the beacon chain from here **BEACON CHAIN**

PROOF OF STAKE

Validators will reside here and link to the Shard Chains

Credit: Shawn Dexter

SHARD CHAIN

TX & DATA

Multiple shard chains – each holding a portion of transactions

Sharding Protocol	P2P	Efficient Scheme	State Execution	Engineering	Security
Random Number Generation	libp2p Transport Layer	Digital Signature Scheme	eWASM	Backend System and API Design	Formal Verification
Block Proposal	Sharding Network Topology	Efficient Accumulator	Account Abstraction	Testnet DevOps	System Audit
Notary Committee Selection		Data Encoding n' Decoding	Account Restriction	UX for Devs	
Data Availability			Stateless Client		
Casper Integration			Cross-shard Transaction		Credit: <u>Hsiao-Wei Wang</u>

Ethereum 2.0 Scope of Work

Re-engineering Consensus

Proof of Work	→	Proof of Stake
Burning CPU/GPU/ASIC cycles		Staking Ether
All nodes validate everything	→	Committee-based validation
Random blocktimes	→	Regular block times
No finality	\rightarrow	Transaction finality
Environmentally damaging	→	Environmentally lightweight
Inherently centralising	→	Enhanced decentralisation

Credit: Ben Edgington

Ethereum 2.0 Scope of Work

Re-engineering State Transition

State updated at every block		Delayed State Execution	
Ethereum Virtual Machine		eWASM	
Single virtual machine	\rightarrow	Multiple virtual machine types	
Blockchain as state archive	\rightarrow	Blockchain as transaction ledger	
Limited programming paradigms	→	Scope for new paradigms (Fae?)	

Credit: Ben Edgington

ENTERPRISE ETHEREUM ARCHITECTURE STACK

APPLICATION		
DAPPS	APPLICATIONS	EXPLORERS, MONITORING & BUSINESS INTELLIGENCE
INFRA CONTRACTS & STANDARDS	IDENTITY RBAC NETWORK GOVERNANCE	TOKEN STANDARDS ETHEREUM NAME SERVICE
SMART CONTRACT TOOLS	SMART CONTRACT LANGUAGES	FORMAL VERIFICATION
TOOLING PERMISSIONS & CREDENTIALS	WALLETS KEY MANAGEMENT H	SM PERMISSIONING / AUTHENTICATION
INTEGRATION & DEPLOYMENT TOOLS	INTEGRATION LIBRARIES	ENTERPRISE MANAGEMENT SYSTEMS
CLIENT INTERFACES / APIs	JSON-RPC INTER-CHAIN	ORACLES
PRIVACY / SCALING		
PRIVACY	ON-CHAIN OFF-CHA	IN (TRUSTED EXECUTION) PRIVATE TRANSACTIONS
SCALING	ON-CHAIN (LAYER 1) OFF-CHAIN (LAYER 2 COMPUTE)	
CORE BLOCKCHAIN		
STORAGE/LEDGER	ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CH	ON-CHAIN PRIVATE STATE
EXECUTION	EVM SYNC PRECOMPILED CONTRACTS	TRUSTED EXECUTION
CONSENSUS	PUBLIC CONSENSUS	PRIVATE CONSENSUS
NETWORK		
NETWORK PROTOCOL	DEVP2P	ENTERPRISE P2P
	Yellow Paper Public Ethereum Application Ethereum, and Application Layer components may be extended for En	

© 2018 Enterprise Ethereum Alliance

Hyperledger-fabric model

- Distinct roles of users, and validators
- Users deploy new pieces of code (chaincodes) and invoke them through deploy & invoke transactions
- · Validators evaluate the effect of a transaction and reach consensus over the new version of the ledger
- Ledger = total order of transactions + hash (global state)
- Pluggable consensus protocol, currently PBFT & Sieve

IBM Blockchain Platform Architecture

4차 산업혁명 융합 모델 예시

Agile 업무 프로세스/UX Innovation Integration/Convergence Layer Bigdata/Data AI Tech **Cloud Service** IoT Tech Analytic **Blockchain Core** Distributed Consensus Sharding P2P Security Ledger Network **Algorithm** Tech

전체 Data Governance 완성

Global 신뢰성과 투명성 확보

업무 프로세스 혁신

감사 합니다.

수석 컨설턴트/오픈 블럭체인 포럼 윤석빈

카카오톡 ID: seokbin7

